Home Chemistry C–H···π interactions disrupt electrostatic interactions between non-aqueous electrolytes to extend solubility

C–H···π interactions disrupt electrostatic interactions between non-aqueous electrolytes to extend solubility

0
C–H···π interactions disrupt electrostatic interactions between non-aqueous electrolytes to extend solubility

[ad_1]

  • Winsberg, J., Hagemann, T., Janoschka, T., Hager, M. D. & Schubert, U. S. Redox-flow batteries: from metals to natural redox-active supplies. Angew. Chem. Int. Ed. 56, 686–711 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, M., Rhodes, Z., Cabrera-Pardo, J. R. & Minteer, S. D. Latest developments in rational design of non-aqueous natural redox move batteries. Maintain. Vitality Fuels 4, 4370–4389 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Luo, J., Hu, B., Hu, M., Zhao, Y. & Liu, T. L. Standing and prospects of natural redox move batteries towards sustainable vitality storage. ACS Vitality Lett. 4, 2220–2240 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kowalski, J. A., Su, L., Milshtein, J. D. & Brushett, F. R. Latest advances in molecular engineering of redox lively natural molecules for nonaqueous move batteries. Curr. Opin. Chem. Eng. 13, 45–52 (2016).

    Article 

    Google Scholar
     

  • Soloveichik, G. L. Circulate batteries: present standing and tendencies. Chem. Rev. 115, 11533–11558 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wedege, Ok., Dražević, E., Konya, D. & Bentien, A. Natural redox species in aqueous move batteries: redox potentials, chemical stability and solubility. Sci. Rep. 6, 1–13 (2016).

    Article 

    Google Scholar
     

  • Er, S., Suh, C., Marshak, M. P. & Aspuru-Guzik, A. Computational design of molecules for an all-quinone redox move battery. Chem. Sci. 6, 885–893 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sevov, C. S. et al. Evolutionary design of low molecular weight natural anolyte supplies for functions in nonaqueous redox move batteries. J. Am. Chem. Soc. 137, 14465–14472 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, S. G., Yan, Y., Hendriks, Ok. H., Sanford, M. S. & Sigman, M. S. Creating a predictive solubility mannequin for monomeric and oligomeric cyclopropenium-based move battery catholytes. J. Am. Chem. Soc. 141, 10171–10176 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sevov, C. S. et al. Bodily natural method to persistent, cyclable, low-potential electrolytes for move battery functions. J. Am. Chem. Soc. 139, 2924–2927 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichardt, C. & Welton, T. Solvents and Solvent Results in Natural Chemistry (Wiley, 2011).

  • Hansen, C. M. Hansen Solubility Parameters: A Consumer’s Handbook (CRC Press, 2000).

  • Barton, A. F. M. Solubility parameters. Chem. Rev. 75, 731–753 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Geysens, P., Evers, J., Dehaen, W., Fransaer, J. & Binnemans, Ok. Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for natural redox move batteries via molecular modification. RSC Adv. 10, 39601–39610 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attanayake, N. H. et al. Tailoring two-electron-donating phenothiazines to allow high-concentration redox electrolytes to be used in nonaqueous redox move batteries. Chem. Mater. 31, 4353–4363 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Milshtein, J. D. et al. Excessive present density, lengthy period biking of soluble natural lively species for non-aqueous redox move batteries. Vitality Environ. Sci. 9, 3531–3543 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J. et al. Liquid catholyte molecules for nonaqueous redox move batteries. Adv. Vitality Mater. 5, 1–6 (2015).

    Article 

    Google Scholar
     

  • Lall-Ramnarine, S. I. et al. Connecting structural and transport properties of ionic liquids with cationic oligoether chains. J. Electrochem. Soc. 164, H5247–H5262 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gong, Ok., Fang, Q., Gu, S., Li, S. F. Y. & Yan, Y. Nonaqueous redox-flow batteries: natural solvents, supporting electrolytes, and redox pairs. Vitality Environ. Sci. 8, 3515–3530 (2015).

    Article 

    Google Scholar
     

  • Sevov, C. S., Hendriks, Ok. H. & Sanford, M. S. Low-potential pyridinium anolyte for aqueous redox move batteries. J. Phys. Chem. C 121, 24376–24380 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, W. C. & Kurth, M. J. The Zincke response. A evaluate. Org. Prep. Proced. Int. 34, 585–608 (2002).

    Article 
    CAS 

    Google Scholar
     

  • DiMauro, E. F. & Kozlowski, M. C. Phosphabenzenes as electron withdrawing phosphine ligands in catalysis. J. Chem. Soc. Perkin. Trans. 2, 439–444 (2002).

    Article 

    Google Scholar
     

  • Yue, H. et al. Nickel-catalyzed C–N bond activation: activated main amines as alkylating reagents in reductive cross-coupling. Chem. Sci. 10, 4430–4435 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abraham, M. H. & Le, J. The correlation and prediction of the solubility of compounds in water utilizing an amended solvation vitality relationship. J. Pharm. Sci. 88, 868–880 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brethomé, A. V., Fletcher, S. P. & Paton, R. S. Conformational results on physical-organic descriptors: the case of sterimol steric parameters. ACS Catal. 9, 2313–2323 (2019).

    Article 

    Google Scholar
     

  • Verloop, A., Hoogenstraaten, W. & Tipker, J. in Drug Design. (ed. Ariënsvol, E. J.) vol. 1962, 165–207 (Tutorial Press, 1976).

  • Verloop, A. in The Sterimol Strategy: Additional Growth of the Technique and New Functions (eds Doyle, P. & Fujita, T.) 339–344 (Elsevier, 1983).

  • Karthikeyan, S., Ramanathan, V. & Mishra, B. Ok. Affect of the substituents on the CH···π interplay: benzene–methane complicated. J. Phys. Chem. A 117, 6687–6694 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wheeler, S. E., Seguin, T. J., Guan, Y. & Doney, A. C. Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc. Chem. Res. 49, 1061–1069 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houser, J. et al. The CH–π interplay in protein–carbohydrate binding: bioinformatics and in vitro quantification. Chem. Eur. J. 26, 10769–10780 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuzuki, S., Honda, Ok., Uchimaru, T., Mikami, M. & Tanabe, Ok. The magnitude of the CH/π interplay between benzene and a few mannequin hydrocarbons. J. Am. Chem. Soc. 122, 3746–3753 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Knowles, R. R. & Jacobsen, E. N. Enticing noncovalent interactions in uneven catalysis: Hyperlinks between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Israelachvili, J. N. Intermolecular and Floor Forces (Tutorial Press, 2011).

  • Mclachlan, A. D. Impact of the medium on dispersion forces in liquids. Talk about. Faraday Soc. 40, 239–245 (1965).

    Article 

    Google Scholar
     

  • Davey, R. J., Schroeder, S. L. M. & Ter Horst, J. H. Nucleation of natural crystals—a molecular perspective. Angew. Chem. Int. Ed. 52, 2166–2179 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hulme, A. T. et al. Seek for a predicted hydrogen bonding motif—a multidisciplinary investigation into the polymorphism of 3-azabicyclo[3.3.1]nonane-2,4-dione. J. Am. Chem. Soc. 129, 3649–3657 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davey, R. J., Dent, G., Mughal, R. Ok. & Parveen, S. In regards to the relationship between structural and development synthons in crystal nucleation: resolution and crystal chemistry of carboxylic acids as revealed via IR spectroscopy. Crystal Development Design 6, 1788–1796 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Tresca, B. W. et al. Substituent results in CH hydrogen bond interactions: linear free vitality relationships and affect of anions. J. Am. Chem. Soc. 137, 14959–14967 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simeral, L. & Amey, R. L. Dielectric properties of liquid propylene carbonate. J. Phys. Chem. 74, 1443–1446 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Maryott, A. A. & Smith, E. Desk of Dielectric Constants of Pure Liquids. 514, 1–56 (US Authorities Printing Workplace, 1951).

  • Kolling, O. W. Dielectric characterization of cosolvent methods containing tetrahydrofuran. Trans. Kansas Acad. Sci. 94, 107 (1991).

    Article 

    Google Scholar
     

  • Richards, T. W. & Shipley, J. W. The dielectric constants of typical aliphatic and fragrant hydrocarbons, cyclohexane, cyclohexanone, and cyclohexanol. J. Am. Chem. Soc. 41, 2002–2012 (1919).

    Article 
    CAS 

    Google Scholar
     

  • Pinal, R. Impact of molecular symmetry on melting temperature and solubility. Org. Biomol. Chem. 2, 2692–2699 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Umezawa, Y., Tsuboyama, S., Honda, Ok., Uzawa, J. & Nishio, M. CH/π interplay within the crystal construction of natural compounds. A database research. Bull. Chem. Soc. Jpn 71, 1207–1213 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Sheldrick, G. M. Crystal construction refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Sheldrick, G. M. SHELXT—built-in space-group and crystal-structure dedication. Acta Crystallogr. A 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. Ok. & Puschmann, H. OLEX2: a whole construction resolution, refinement and evaluation program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kawahara, S. I., Tsuzuki, S. & Uchimaru, T. Theoretical research of the C-F/π interplay: engaging interplay between fluorinated alkane and an electron-deficient π-system. J. Phys. Chem. A 108, 6744–6749 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wheeler, S. E. & Houk, Ok. N. Substituent results in cation/π interactions and electrostatic potentials above the facilities of substituted benzenes are due primarily to through-space results of the substituents. J. Am. Chem. Soc. 131, 3126–3127 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinnokrot, M. O. & Sherrill, C. D. Substituent results in π–π interactions: sandwich and t-shaped configurations. J. Am. Chem. Soc. 126, 7690–7697 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here